

Review of Collins Creek Flood Study

Committee Presentation 12 April 2018

David Tetley

Catchment

- Catchment Simulation Solutions (CSS) established in 2005
- Six staff
- Specialising in hydrologic and hydraulic modelling / flooding investigations as well as engineering software development
- CSS has completed >30 Government funded flood and floodplain risk management studies over the last 8 years for 12 different local Councils

Introduction to CSS	

- My background/qualifications:
 - Bachelor of Engineering (Civil) from the University of
 Wollongong with first class honours and the University
 Medal
 - 6 16 years for flood related experience
 - 6 Director with CSS
 - Part of the consultants working group for the
 Floodplain Development Manual update

Study Area

Major Goals of the Study

- 6 Review the 2011 flood study (and models)
- Quantify the impact that Council's revised blockage policy is predicted to have on flood behaviour
- Quantify the impact that development across each catchment is predicted to have on flood behaviour
- Quantify the impact that the 2016 version of Australian Rainfall & Runoff is predicted to have on flood behaviour

- **Stage 1** Data Collection and Review of Existing Models
- Stage 2 Modelling and Mapping

We're here

Stage 3 – Review of Flood Study Report

Stage 1 Data Collection and Review of Existing Models

Review of Existing Models

- Flood study and associated models were developed in accordance with best practice at the time
- Existing hydrologic model was reviewed and it was determined to be more efficient to develop a new hydrologic model "from scratch"
- This new model was expanded to include two areas that were excluded from the original study

Remote Sensing Land Use

Subcatchment Breakup

Review of Existing Models

- Suggested hydraulic model updates:
 - Smaller grid size (4m down to 2m)
 - 6 Revised channel representation
 - Revised Manning's "n" roughness
 - Full stormwater system
 - Extend model to include two areas that were excluded from the original study

Additional Data Collection

- Additional survey collected:
 - 6 18 creek cross-sections
 - 6 2 bridges
 - 6 1 culvert

Community Consultation

- Consultation with the community completed using the following:
 - 6 Media release
 - 6 Website
 - Sewsletter and questionnaire
- Questionnaire
 - Sent to over 6,000 properties
 - 6 Received 503 responses
- Key findings from responses:
 - 177 respondents reported being impacted by flooding (including 25 reporting above floor inundation)
- Most respondents provided information on the 1998 flood. But information on more contemporary floods was provided

Community Consultation

Stage 2 Modelling and Mapping

Modelling Scenarios

- The following scenarios will be simulated:
 - Base:2011 catchment conditions with "old" blockagepolicy and ARR1987 hydrology
 - Scenario 1:2011 catchment conditions with <u>"revised"</u>blockage policy and ARR1987 hydrology
 - **Scenario 2**: <u>2017 catchment conditions</u> with "revised"

blockage policy and ARR1987 hydrology

Scenario 3: 2017 catchment conditions with "revised" blockage policy and <u>ARR2016 hydrology</u>

Example of 1% AEP difference map (Scenario 1 – Revised Blockage Policy Impacts)

Changes to reflect catchment modifications

- <u>Scenario 1</u>: Revised blockage policy is generally producing lower peak flood levels and flood extents (most notably upstream of structures)
- <u>Scenario 2</u>: Catchment development between 2011 and
 2017 is predicted to generate very small increases in peak
 discharges (<1% on average)

Next Steps in Stage 2

Scenario 2:

-> Complete hydraulic modelling

- -> Prepare mapping
- Scenario 3:
 - -> Finalise ARR2016 inputs / methodology
 - -> Complete hydrologic modelling
 - -> Complete hydraulic modelling

-> Prepare mapping

Stage 3: Preparation of a draft report

6 Questions, comments or suggestions?

